Use a CC1101 Radio module with a Raspberry Pi

Our previous PDF for Raspberry Pi showed you how to reverse engineer wireless gadgets that use
the 433.92MHz AM frequency with OOK signalling, so you can learn codes sent by inexpensive
wireless remote contols, and then use those codes to have your Raspberry Pi turn mains sockets on
and off using a timer Python script on the Pi. If that sounds like what you want to do, you can read
that PDF at http://www.securipi.co.uk/remote-433-receivers.pdf

The CC1101 radio modules have several advantages over the fixed 433.92MHz OOK receivers:

1. Send and receive on 315MHz, 433MHz, 868MHz and 915MHz ISM frequencies.

2. Support for 2-FSK, GFSK, ASK/OOK, 4-FSK & MSK modulation schemes.

3. External RP-SMA antenna socket. So it’s simple to add Yagi antennas for long distance comms.
4. Much of the signal processing is done on the radio boards for us, so less processor intensive.

The CC1101 boards we used are available for as little as £3.80 each on eBay or Aliexpress. You’ll
need a pair of CC1101 boards and two Raspberry Pi’s to follow this guide.

The boards attach to the SPI pins on the Pi:

MOSI
) CSN] I I

CC1181 <-> Raspberry Pi

2 vee - 3.3V (Pin 17}
51 - MO5I (Pin 19)
S0 - MISO (Pin 21)
CSH - 8§ (Pin 24)
SCK - SCLK (Pin 23)
GU2 - GPID ([Pin 22}

GUa - not used

GND - GND (Pin 20)
= \h‘ : - i 33
rry Pi 4B 5 e] = ¥] *
s A i (=]
il = RO :

Mod1
Rasphbe

http://www.securipi.co.uk/remote-433-receivers.pdf

You can attach the CC1101 board to the Pi using regular female to female breadboard cables, or you
can use a PCB adapter, like this:

Our eBay store has the PCB adapters ready assembled here:
https://www.ebay.co.uk/itm/135176300449

Or a PCB panel with 6 adapter PCBs on it, ready to make you own, here:
https://www.ebay.co.uk/itm/135176304156

We also have the correct blue PCB CC1101 modules for the adapters here:
https://www.ebay.co.uk/itm/166899335741

We even sell an adapter for the Flipper Zero, so you can plug a CC1101 external radio in:
https://www.ebay.co.uk/itm/135174202494

When the adapter is attached to the Pi you should be able to see 8 free pins either side of it.

https://www.ebay.co.uk/itm/135174202494
https://www.ebay.co.uk/itm/166899335741
https://www.ebay.co.uk/itm/135176304156
https://www.ebay.co.uk/itm/135176300449

As the adapter communicates over SPI, we need to enable SPI mode on the Raspberry Pi:

sudo raspi-config

| Raspberry Pi Software Configuration Tool (raspi-config) |

Pl Camera EnablesDizable connection to the Raspberry Pi Camera
P2 55H EnablesTizable remote command line access to your Pi using S5H
P3 WHC Ensblesllizable graphical remote access to your Pi using RealWNC

4 SPI Enableslizable automatic loading of SPI kernel module
PS5 IZ2C EnablesDizable automatic loading of IZC kernel module
PE Serial EnablesTizable shell and kernel messages on the serial connection
P?Y 1-Wire Ensblesllizable one-wire interface

F2 Remote GFID EnablesDlizable remote access to GPIO pins

<Selectr <Back>

We also need the WiringPi library installed.
wget https://github.com/WiringPi/WiringPi/releases/download/3.6/wiringpi 3.6 _armhf.deb
sudo dpkg -i wiringpi 3.6 _armhf.deb

If you have 64 bit Pi OS use wiringpi_3.6_arm64.deb instead.
Then do this:

gpio -v
gpio readall

5 L0 =] (5] Gl

Now we have SPI mode enabled and have WiringPi installed, we still need some software to drive
the CC1101 boards.

The best software to use can be found at this Github page: https://github.com/SpaceTeddy/CC1101

The readme file at the Github page covers basic installation and testing of the RX_Demo (receiver)
and TX_Demo (transmitter) scripts. This is exactly how we installed and configured it on both
machines:

sudo apt-get install git-core

git clone https://github.com/SpaceTeddy/CC1101

cd CCl1o1l

cp ~/CC1l101/examples/raspi/*.cpp ~/CC1l101

Then on the machine that’s going to be the transmitter:

sudo g++ TX Demo.cpp ccll00 raspi.cpp -o TX Demo -lwiringPi
sudo chmod 755 TX Demo

sudo ./TX Demo -v -al -r3 -i1000 -t5 -cl -f434 -ml00O
On the machine that will act as the receiver:

sudo g++ RX Demo.cpp ccll00 raspi.cpp -0 RX Demo -lwiringPi
sudo chmod 755 RX Demo

sudo ./RX Demo -v -a3 -cl -f434 -mlE0O

If that worked you should now see packets going over-the-air between the two Pi’s, like this:

Note: I couldn’t get this to work correctly on a Pi5, where the Processor and GPIO pins are abstracted via a microcontroller, and
wiringPi support is still quite new (6™ August 2024) — it locks up after seeming to transmit the first packet. It works fine on Pi4, Pi
Zero and even an original Model B running Raspberry Pi OS Lite Bookworm Debian 12.

Because the boards can work with a wide range of different frequencies, modulation schemes and
data rates, they are configured by sending a matching configuration block to each radio over SPI.
Once each radio is setup in the same configuration, it’s just a case of transmitting a data packet
burst on one radio and reading the receive buffer on the other radio.

The RX and TX demo files are great, but they don’t do anything really useful for us. In the next
examples I’ll show you how to attach a PIR to the transmitter Pi, and store times and dates the PIR
is triggered in a logfile on the receiver Pi.

https://github.com/SpaceTeddy/CC1101

You can download our own demos to both your Pi’s with:

wget securipi.co.uk/ccll0l.zip
unzip ccl101.zip
ls

Here’s the list of files downloaded & what they do:

TX_DemoPir.cpp Transmits a PIR2 message whenever the PIR detects movement
RX_DemoPir.cpp Receives a signal and prints “PIR2 Triggered” to console.
RX_DemoPir2.cpp as above, with time and date logging to file test.txt

RX_DemoPird.cpp as above, but also flashes an LED connected to GPIO4 when PIR triggered

Each of the cpp files are source code which needs to be compiled in the same way as the other
demos. So for example, to use TX_DemoPir.cpp

sudo g++ TX DemoPir.cpp ccl1l00 raspi.cpp -o TX DemoPir -lwiringPi
sudo chmod 755 TX DemoPir

sudo ./TX DemoPir -v -al -r3 -11000 -t5 -cl -f434 -ml00O

In the silent folder there’s another version of the receiver demo code, with all the printf statements
commented out and an exit(0) command immediately after it receives a valid code. We’ve done that
so you can call the receiver code from a shell script, and when a valid message is received by the
shell script you could send an email to your phone, or turn on an LED, or switch a relay controlling
a water pump, or open a door lock.

cd silent

1s

RX_DemoPir.cpp receiver with no message to screen, prints PIR2 and exits
receive.sh shell script, prints “PIR 2 triggered” to console. Loops
receive2.sh shell script, as above but doesn’t loop

receive3.sh as above, and turns on LED connected to GPIO4 for 3 seconds.

To use the silent versions of the receiver

sudo g++ RX Demo.cpp ccll00 raspi.cpp -0 RX Demo -lwiringPi
sudo chmod 755 RX Demo

chmod a+x receive3.sh
sudo ./receive3.sh

You can inspect & modify the contents of the source .cpp files and .sh files with nano. Example:
nano receive3.sh

You could use the TX_DemoPir program on several different Raspberry Pi’s, all with PIR modules
attached and just modify the message sent to PIR1, PIR2, or PIR3 on each different Pi. Then on the

receiver code, change this line, which currently looks for the number 2 - if(Rx_fifo[6] == 0x32)
to look for PIR1 with 0x31 or look for PIR3 with 0x33.

Ve
51

S0

CSN
SCK
GU2
GUO
GND

UsSBE 2x

%

T TR
Rl &l e

Attach a PIR sensor to the transmitter Pi. If you pull the white dome off the Pir sensor you’ll usually

use 2x 2x m
spromisofGrios [21] 22]GP10 25 |
) comcoms @ scomen

CC1101 <-> Raspberry

3.3V (Pin
MOSI (Pin
MISO (Pin
sS (Pin
SCLK (Pin
GPIO (Pin
not used

GND (Pin

P1i

17)
19)
21)
24)
23)
22)

20)

see the pin designations screen-printed on the PCB. (radio shown is the old 5x2 pin version)

Pir sensor Raspberry Pi

VCC 5 Volts

GND GND

ouT GPIO 4 (pin 7 in WiringPi speak)

If you’re attaching an LED to the receiver, attach a 220 ohm resistor in series, like this:

we— ®

sEREEREEREEEE
DSI (DISPLAY)

fritzing

In the previous pages we mentioned how the CC1101 radio gets configured - to work on a certain
frequency, modulation scheme and gain level - by a configuration block sent over the SPI interface.
When you run the standard TX_Demo and RX_Demo examples the current configuration settings
for Config Register and PaTable get printed to the terminal, like this:

Dema —w —a3 -cl -f434 -ml00

If you edit the file cc1100_raspi.cpp you’ll see the config block for the -m100 modulation speed
option. The defaults are 868MHZ, and we’ve used 434MHz in the example above, so it got changed
around a bit:

0_kb[CFG_REGISTER] = 4

Here’s the example of the PaTable settings (power output of the radio for each frequency)

patable_

patable_
patable_
patable_

You can see our PaTable setting matches the 433/434MHz setting from the command line
RX_Demo options.

Say you want to reverse engineer a wireless gadget of your own, and you’ve already descovered the
frequency, modulation scheme and data rate, how do you then find out the correct config values for
the radio? You need a free Windows application from Texas Instruments called Smart RF Studio 7.

@ SmartRF Studio 7 - Texas Instruments

Smart ™ Studio7

Sub-1 GHz

CC1312R

CcC1110
Sub-1GHz USB Sub-1GHz Sub-1GHz
Wireless MCU Wireless MCU Wireless MCLU

+a v » - +5 -

List of Connected Devices: Refresh List: @

0 Connected Device(s)

You can download it from https://www.ti.com/tool/download/SMARTRF-STUDIO-7/

Then click the CC1101 button’s red circle and choose Open RF Device in Offline Mode.

https://www.ti.com/tool/download/SMARTRF-STUDIO-7/

The main screen for Smart RF Studio 7 looks like this:

&0 CC1101 - Device Control
File Settings View Evaluation Board Help

BT

P start

W siop Register View [/ RF Parameters

Typical Settings

= Generic 365MHz

Daa rate: 1.2 kBaud, Dev.
Data rate: 1.2 kBaud,

Optimized for sensiiviy
ptimized for current consumption

Regiter Bxport

Regiter

Data rate: 12 kBaud, Dev: 52 kHiz, Mod: ASK, RX BWW: 58 kHz, Optimized for senstivity L EE= =
et rotc 24 KB, Do 52 ok o GFSK. RXBIE 51, Cptsed for sty » ocrt =
bt rtc 24 KB, Dov: 52 e, lod GFOK, FX B 58 1, Optimce o cuten consumpion Ml e o
s rrome a
b s o
o Parameters o E
Sase Freauency Chommetumer JE—— [S— + e s
[oo 9853 |) e o & » P o
Xtal Frequency Data Rate: RXFiter BW. D |[uSrio =
e L oom w
25000000+ iz 1issss | ioau T HanchesterEnale
= e w
Hoduiton Forrt Devitin Xrouer) lrecms s
s sieren e) 7] paramping) FscrR0 w
[Whitening O[3 21
o reear =
» reeao %
Range Extender [lone <] v woucros v
s woucros =
v wocre2 “
Contnuous T | Contnuous R | PaGkELTK | packe Rx | R Devie Commands | PER Test Confguraion + lvowcror 2
+ wocreo "
PactetData iz | 20|] 08 Sea. Number o il "
ot Count o wesie o
Random |13 0688 0a 1c.db ae 3220 %a 50 e 4075 36 14 12 49 22 15 9e 7d 49 dc ad 4114 12] 1 D =W 2
R b MCSMo 18
o] (s Foccrs 45
e The te/dta that il be TarsmIRed ¥ Todt o Hot & checked. o i o
L accors o
) accoraLt “
) accole o
) vorevmr .
L worevTo =
b vioRcTRL s
) Fer 5
o rrenoo o
Setrocies 0 o it .
Feaueney JrE— o vt =
Oupupouer oaBm e
[7] Advanced Start Stop

Value (Hex)

I

Not Connected

Offine Hode.

Rado State: LA,

In the center panel you can choose RF Parameters: Base Frequency, Modulation Format, Data Rate
and TX Power. When you change these values, the hex values on the right of the screen change too.
When all the options are set you can export the Hex values needed to configure the radio by
clicking the Register Export button on the top right of the window.

m Register Export

Templates

New

HTML
New template
Packet sniffer settings

Template Hame File

Registers

Undo il Save] |

]

[seect. || exporttoFie.. || CopytoCipboara | |

srfexp_htmlxml
sriexp_new.xml
srfexp_packet_sniffer_settings xml

// Rf settings for CC1l101

RF_SETTINGS code rfSettings = {
0x29, // IOCFG2 GDO2 Output
0x2E, // ICCFG1 GDC1 Cutput Pin Configura)
ox06&, // ICCFGO GDCO Cutput Pin Configura)

Pin Configura

RF settings HAL

SimpliciT] settings

Template View/Edit
File:

RF settings struct typedef

Tr=EB RF Settings Performal
TrxEB RF Settings Value Lin

BCHIPIDE
Comment: |/ /

VCO_WC_DAC
TXBYTES

/f/ RE setq
RF_SETTIN(

RXBYTES
RCCTRL1_STATUS
RCCTRLO_STATUS

d TX FIFC Thres
[2 [l

High Byte
Low Byte
ogth
omation Control
omation Control
ress
mber
Synthesizer Con|®
Synthesizer Con
Control Word, H
Control Word, M
Control Word, L
iguration
iguration
iguration
iguration
iguration
ation Setting
Control State
Control State
Control State

cted Registers (47)

[| [— | [— | — | s—| [— | — | s—) | s—

Registers: ‘

0x@VHE,

Be<@// BRNER<<E @ERdE

ffset Compensa
Bit Synchronization Confi
AGC Control

AGC Control

AGC Control

High Byte Event0 Timeout
Low Byte Event0 Timeout
Wake On Radio Control
Front End BX Configuratio .

BSCFG
LGCCTRLZ
LGCCTRL1
LGCCTRLO
WOREVT1
WOREVTO
WORCTRL
FREND1

T] 3

I’ve chosen template RF settings, then clicked on Select in the Registers tab, moved all 61 values to
the right hand pane, and then scrolled down to TESTO, selected everything below that starting with

PARTNUM, and moved them back to the left pane. I’'m then left with a block of 47 values that can

be cut and pasted back into SpaceTeddy’s cc1100_raspi.cpp file, as replacements.

That only leaves us with the question of how do you discover that frequency, modulation scheme
and data rate of your current RF devices, that you might want to make the CC1101 module receive
from, or replicate the transmission signal of another device.

Say I have a wireless alarm system in my home that I know operates around the 868MHz band. I’d
first get a USB RTL-SDR/TV dongle for around £10-£20 from eBay (search on eBay for RTL-
SDR) and then install GQRX on my Ubuntu Linux PC following this short guide:
http://ggrx.dk/download/install-ubuntu You also need to blacklist the kernel driver otherwise it
assumes you want to use it as a TV stick — see http://oh2bsc.com/2015/02/17/getting-started-with-

sdr-radio-using-dvb-t-usb-dongle-and-ggrx/

GQRX is then installed to the Internet folder on my list of Programs.

- Gqrx 2.11.5-rtl=0 -+ %

Receiver Options [E3]

167.500 k4

Hardware freq: 867.832500 MHz

Frequency 868000.000 . kHz
Filter width | User (0.4 k)
Filter shape | Normal
Mode | Raw /Q
AGC | Medium
Squelch | -451dB . | A R

Noise blanker NB1 NB2

Input contr... | Receiver Optio... | FFT Settin...

Wl Audio [E5]

Gain; e———— 7.4dB

uppP Rec Play

In the picture above I’ve set the frequency to 868 MHz and clicked the play button in the top left. A
waterfall display then scrolls down the screen and when any RF gadget transmits it appears in the
waterfall. I pressed the keyfob for my car, and two red & yellow bursts appeared. Often 868MHz
gadgets operate on FSK, and because two bursts appear at the same time, I’m assuming the
modulation scheme is 2-FSK (supported by CC1101). We could export this sample to Audacity or
InSpectrum to work out the data rate or we could use Universal Radio Hacker.

http://oh2bsc.com/2015/02/17/getting-started-with-sdr-radio-using-dvb-t-usb-dongle-and-gqrx/
http://oh2bsc.com/2015/02/17/getting-started-with-sdr-radio-using-dvb-t-usb-dongle-and-gqrx/
http://gqrx.dk/download/install-ubuntu

Universal Radio Hacker is a set of tools for capturing and analysing RF signals from an RTL-SDR
USB dongle. Assuming you’ve tried GQRX, URH will run fine too.

https://github.com/jopohl/urh

The manual is here: https://github.com/jopohl/urh/releases/download/v2.0.0/userguide.pdf

And the excellent YouTube tutorial videos start here: https://www.youtube.com/watch?
v=kuubkTDAxwA

I chose to run without installation, like this:

git clone https://github.com/jopohl/urh/
cd urh/src/urh
./main.py

- Universal Radio Hacker [/hom e/timr/urh/src/urh/new] - & x

4| | 1merpretation | Analysis | Generator | Simulator

Narme Sire 1: Complex Signal ® e e
bell

Noise: 00229
Center: 05229

Bit Length 181

Error Tolerance: 5

Modulation ask 4|8

% Autodetect parameters

&) 19822 selected | 19.82ms | RSSL1.167 T Filter (moving average) | ¥

1 [Pause: 6003 s

1000111011101000111010001110100010001110111011101800111010001090111011101110100011101000100010001 [Pause: 5996 samples]
1000111011101000111016001110100010001110111011101000111010001000111011161110100011101000100010001 [Pause: 5992 samples]
1090111011101009111016001110100910601110111011101000111010001600111011161110100011101000100010001 [Pause: 5989 samples]
1000111011161000111610001110100010601116111011101000111010001600111011101116100011101009100010001 [Pause: 5986 samples]

Signal View: Analog 4 [Pause: 5984 samples 1

+ || 1000111011161008111010001110100010001110111011101800111010001600111011101116100011101000160016001 5984 sampl
= [10601110111010001110100011 10100010001 11011101110100011101009100011101110111010091110100010001000 [NEERTL IR AITS]
3| M showsignalas [Bits % || 1000111011101000111010001110100010001110111011101000111010001600111011101110100011101000100010001 [Pause: 5984 samples]

Participants | Description

not assigned
Alce (4)

If you want to do long range communications of say 1KM using two CC1101 modules, then you’ll
need a pair of decent Yagi antennas and free space between the two sites. The antennas are £50 each

from Farnell : http://uk.farnell.com/lprs/yagi-434a/antenna-yagi-7-element-434mhz/dp/2096215 or

http://uk.farnell.com/lprs/yagi-869a/antenna-yagi-9-element-869-915mhz/dp/2096216
also look on Aliexpress for cheaper ones, or make your own.

If you liked this PDF please follow @securipi on twitter.
Check out our website www.securipi.co.uk

We sell lots of electronic parts and kits for Raspberry Pi and Arduino in our eBay shop:
http://stores.ebay.co.uk/ConvertStuffUK

and also here:

https://tri.co.uk/

If you spot any typos/issues please email tim@trcomputers.co.uk — last updated 8" October 2024.

http://uk.farnell.com/lprs/yagi-434a/antenna-yagi-7-element-434mhz/dp/2096215
https://www.youtube.com/watch?v=kuubkTDAxwA
https://www.youtube.com/watch?v=kuubkTDAxwA
https://github.com/jopohl/urh/releases/download/v2.0.0/userguide.pdf
https://github.com/jopohl/urh
http://uk.farnell.com/lprs/yagi-869a/antenna-yagi-9-element-869-915mhz/dp/2096216
mailto:tim@trcomputers.co.uk
https://tri.co.uk/
http://stores.ebay.co.uk/ConvertStuffUK
http://www.securipi.co.uk/

	Use a CC1101 Radio module with a Raspberry Pi

